(a) P(A) = P(B) = P(C) = 1/2 $A \cap B = \{2,3\}$ $A \cap C = \{3,4\}$ $B \cap C = \{3,6\}$ $\Rightarrow P(A \cap B) = P(A) P(B)$, $P(A \cap C) = P(A) P(C)$, $P(B \cap C) = P(B) P(C)$ $= V_4$ $= V_4$ = 1/4Finally $A \cap B \cap C = \{3\}$ and $P(A \cap B \cap C) = P(A) P(B) P(C)$ = 1/8A, B, C are statistically independent.

(b) E and F are statistically independent by theorem 3 at page 10 in the notes.

(i)
$$P(n_0) = 0.5 \times 0.8 + 0.25 \times 0.2 = 0.45$$

 $P(n_1) = 0.5 \times 0.2 + 0.8/4 = 0.3$
 $P(n_2) = 0.2 + 0.8 = 0.25$
 $4 + 0.8 = 1$ check!

(ii)
$$P(m_0|\pi_1) = \frac{P(m_0, \pi_1)}{P(n_1)} = \frac{0.5 \times 0.2}{0.3} = 1/3$$

 $P(m_1|\pi_1) = \frac{P(m_1, \pi_1)}{P(n_1)} = \frac{0.2}{0.3} = 2/3$
 $P(m_2|\pi_1) = \frac{P(m_2, \pi_1)}{P(n_1)} = \frac{0}{0.3} = 0$

somme = 1 clock!

T2-9

3 V2TT X 9 -(N-5)/18

3 12 T x 9

M=5 $T^2=9$

(a) Q(7-5) = Q(2/3) = 0.252492

(b) $Q(\frac{3-5}{3}) = 1 - Q(\frac{3}{3}) = 0.7475074$

(c) Q(6-5) - Q(7-5)

Q(13) - Q(3/3) = 0.1169488

On calcule d'abord

$$\oint_{X} (4 | Z = 0.6) = \oint_{Z} (4, 0.6) = \oint_{Z} (4, 0.6) = \oint_{Z} (0.6) =$$

On a alors $P(X<0.5|Z=0.6) = \int_{0.5}^{0.5} p_{X}(4|Z=0.6) d4$ $= \int_{0}^{0.6} \frac{e^{4}}{e^{0.6}-1} d4 = \frac{e^{0.5}-1}{e^{0.6}-1} = 0.789085$ $P(X>0.5|Z=0.6) = \int_{0.5}^{\infty} p_{X}(4|Z=0.6) d4$ $= \int_{0.5}^{0.6} \frac{e^{4}}{e^{0.6}-1} d4 = \frac{e^{0.6}-e^{0.5}}{e^{0.6}-1} = 0.210915$

Il fant donc décider que X < 0,5 et il y a 78,9% des Chances que cette décision soit bonne.