Solution #1

(c) feriordique et la période est
$$T = 1/3$$
:
 $1/6(t + 1/3) = 1 + cos(6\pi(t + 1/3))$
 $= 1 + cos(6\pi t + 2\pi)$
 $= 1 + cos(6\pi t) = 1/6(t)$

Solution #2

$$\int_{-\infty}^{\infty} e^{-t/2} w(t) \operatorname{signum}(t-5) \left(\delta(t-3) + \delta(t-7)\right) dt$$

On a 2 impulsions dans l'integrand: I impulsion à t=7. On tvalue facilement;

$$g(3) = e^{-3/2} w(3) signum(-2) = -e^{-3/2}$$

$$g(7) = e^{-7/2} u(7) \text{ signum}(2) = e^{-7/2}$$

A près intégration on abtient e-7/2 - e-3/2 ~ -0. 19293.

Solution #3

$$E_{a} = \int_{-\infty}^{\infty} q^{2}(t) dt$$

$$= \int_{0}^{+} t dt + \int_{1}^{3} dt$$

$$= \frac{t^{2}}{2} + t + t + \int_{1}^{3} dt$$

$$= \frac{1}{2} + z = z, 5$$

Solution #4

(α)	m	0	1	2	3
	Gn	0	1.4866 [137.70	0.57064/61.19°	0.3550/110010
	G-M	0	1.4866/-137.70	0.570641-61.190	10.35501-110.10

n	4	5
Gn	0.2593/74.620	0,2048/102.40
G-n	0.2593/74.620	0,20481-102.40

$$|G_0|^2 + 2|G_1|^2 + 2|G_2|^2 + 2|G_3|^2 + 2|G_4|^2 + 2|G_5|^2$$

La largeur de bande est donc 4 k Hz. (c) On obtient facilement

ml	0	1	2	3	4	5	
Cm	0	2.9732	1.14128	0.71	0.5186	0.4096	
On	00	137,70	61.190	110,1°	74.62°	102,4°	Hill