EEE210B: Electronic Devices and Circuits

Tuesday, 3 February 2015

Second Quiz

REMARKS:

- 1. Hand held non-communicating calculator is allowed,
- 2. Closed book quiz,
- 3. Formula sheets are attached,
- 4. Marks distribution:
 Question #1: 6 points
 Question #2: 4 points
- 5. Justify all your answers.

1. The initial condition of the circuit in figure 1 is $i_L(0^-) = -5$ mA. Assuming an ideal diode, calculate and sketch on a clearly labelled graph $i_L(t)$ for $0 \le t \lesssim 20 \ \mu s$.

Figure 1:

Name:	College Number:
-------	-----------------

- 2. In the elementary power supply of figure 2, the Zener voltage of D_5 is 5.1 V and we have
 - $v_i(t) \equiv \text{sinewave of rms value 120 V, frequency 60 Hz, 0 V DC offset (average value is 0),}$
 - $v_1(t) \equiv \text{sinewave of approximate rms value 18 V, frequency 60 Hz, 0 V DC offset (average value is 0),}$
 - $v_2(t) \equiv \text{signal with a large DC offset and large ripple, such that at all time 15 V \le v_2(t) \le 25 V.$
 - (a) Briefly explain the operation of the full-wave diode rectifier.
 - (b) Calculate R_P so that the circuit can supply 5.1 V to any load resistor R_L of at least 100 Ω . Do not give a trivial answer. In other words, find the largest possible value of R_P that would work.

Figure 2:

END

Formula Sheets

$$\cos\theta = \sin(\theta + 90^{\circ}) \qquad 2\cos u \cos v = \cos(u - v) + \cos(u + v)$$

$$2\sin u \sin v = \cos(u - v) - \cos(u + v) \qquad 2\sin u \cos v = \sin(u - v) + \sin(u + v)$$

$$2\sin\theta \cos\theta = \sin(2\theta) \qquad 2\cos^{2}\theta = 1 + \cos(2\theta)$$

$$2\sin\theta = \frac{e^{j\theta} - e^{-j\theta}}{2j} \qquad \cos\theta = \frac{e^{j\theta} + e^{-j\theta}}{2}$$

$$\sin\theta = \frac{e^{j\theta} - e^{-j\theta}}{2j} \qquad \frac{\omega}{2\pi} \int_{2\pi/\omega} (A\cos(\omega t + \phi))^{2} dt = \frac{A^{2}}{2}$$

$$T = \frac{1}{f} = \frac{2\pi}{\omega} \qquad P = \frac{V^{2}}{R} = RI^{2}$$

$$v = Ri \qquad i = C\frac{dw}{dt} \leftrightarrow v = \frac{1}{C} \int idt$$

$$Z_{R} = R$$

$$Z_{C} = \frac{-j}{\omega C} \qquad Z_{L} = j\omega L$$

$$x_{1}||x_{2}||\dots||x_{n}|| = \left(\sum_{i=1}^{n} \frac{1}{x_{i}}\right)^{-1} \qquad R_{eq} = (R_{1}||R_{2}) \Rightarrow R_{1} = (R_{eq}||(-R_{2}))$$

$$v_{R_{1}}(t) = v(t)\frac{R_{1}}{R_{1}+R_{2}} \qquad i_{R_{1}}(t) = i(t)\frac{R_{2}}{R_{1}+R_{2}}$$

$$q = C v \qquad v(\infty) + (v(\sigma^{+}) - v(\infty)) e^{-t/\tau}$$

$$T = \begin{cases} R_{eq}C_{eq} & I = I.38 \times 10^{-23} \text{ joules/Kelvin} \\ q = 1.602 \times 10^{-19} \text{ Coulomb} \end{cases}$$

$$V_{T} \approx 25.2 \text{ mV at } 20 \text{ °C}$$

$$R_{dynamic} = \frac{nV_{T}}{I_{D}+I_{S}} \approx \frac{nV_{T}}{I_{D}}$$

$$V_{GS} > V_{t} \qquad V_{QS} > V_{t}$$

$$V_{DS} > V_{GS} - V_{t} \qquad 0 < V_{DS} < V_{GS} - V_{t}$$

$$I_{D} = K\left(2(V_{GS} - V_{t})V_{DS} - V_{DS}^{2}\right)$$

$$I_{D} = K\left(2(V_{GS} - V_{t})^{2}\right)$$

Formula Sheets (continued)

$$g_{m} = 2K(V_{GS} - V_{t})$$

$$I_{B} > 0$$

$$V_{CE} > 0.2 \text{ V}$$

$$I_{B} > 0$$

$$0 < I_{C} < \beta I_{B}$$

$$I_{C} = \beta I_{B}$$

$$h_{ie} \approx \frac{nV_{T}}{I_{B}} (n = 1 \text{ usually})$$

$$A_{I} = \frac{A_{V}Z_{in}}{R_{L}}$$

$$I_{A} = A_{V}A_{I}$$

$$V_{A} - V_{CE} \approx (V_{B} - 0.7 \text{ V})(1 + \frac{R_{C}}{R_{E}}) \text{ if } R_{B} \ll \beta R_{E} \text{ and } \beta \gg 1$$

For the CMOS inverter:

$$NM_H = V_{oH} - V_{iH}$$
 $NM_L = V_{iL} - V_{oL}$ ere

$$\frac{\frac{dV_o}{dV_i}}{\left|_{V_i=V_{iL}}\right|} = -1 \text{ and } V_{iL} \equiv \text{logic } 0$$

$$\frac{dV_o}{dV_i} \Big|_{V_i=V_{iH}} = -1 \text{ and } V_{iH} \equiv \text{logic } 1$$

$$\operatorname{d}V_{i}\mid_{V_{i}=V_{iH}}$$

