EEE210: Electronic Circuits and Devices

Lab #4: Simple Power Supply

Experimental Work: All oscilloscope readings are done with DC coupling of the channels unless otherwise noted.

1. Start Multisim and build the circuit of figure 1. Adjust the potentiometer to $R_L = 1 \text{ k}\Omega$ (R2) and set its increment property to 2%. Adjust the TMAX simulation parameter to 0.3 ms using:

Simulate > Simulation Settings > Interactive Simulation Settings

- 2. Observe vL(t), vi(t) on the oscilloscope (still with $R_L = 1 \text{ k}\Omega$) with and without capacitor C1.
- 3. Measure $v_2(t)$, $v_o(t)$ on the oscilloscope with $R_L = 0$ Ω . Using the cursors, measure the minimum and maximum values of $v_2(t)$. You may now close the oscilloscope window as it will no longer be required.
- 4. While varying R_L from 1 k Ω to 0, measure:
 - average of $v_o(t)$ as indicated by the DC voltmeter,
 - average of $I_{470}(t)$ as indicated by the DC ammeter,
 - average of $I_Z(t)$ as indicated by the DC ammeter,
 - average of $I_{R_L}(t)$ as indicated by the DC ammeter.

You may also observe that the current in the $470\,\Omega$ resistor remains constant as long as the Zener diode is in reverse conduction (this is the maximum available current in normal operation of the power supply); R_L takes the current that it needs and the balance is shunted through the Zener.

Suggestion: Record the values in a spreadsheet.

Report:

- 1. Sketch a graph of the average of $v_o(t)$ versus the average of $I_{R_L}(t)$ and estimate from the graph the *nominal value* (smallest value) of the load resistor for this simple power supply.
- 2. Compare the nominal value of the load resistor to what is predicted by the theory (i.e. in course notes).

Figure 1: