Answers to EEE210 final exam AY2016-2017

1. (a) i. Replace Zener diode by its model. Then show

 $V_{in} < 0 \Leftrightarrow \text{Zener forward biased}$ $0 < V_{in} < 9 \text{ V} \Leftrightarrow \text{Zener reverse biased off}$ $9 \text{ V} < V_{in} \Leftrightarrow \text{Zener reverse conduction}$

The given V_{out} vs V_{in} is easily obtained.

ii. Zener diode is initially in reverse conduction. Then:

$$V_C(t) = 6 + 6 e^{-t/(2 \text{ ms})} \text{ V}$$

The state of the diode changes at 1.386 ms.

(b) Depending on how you solve the problem you obtain

$$1810~\Omega < R < 1995~\Omega$$

and

$$3.35 \times 10^{-15} \text{ A} < I_S < 3.78 \times 10^{-15} \text{ A},$$

again, depending on how you solve.

2. (a)

$$I_D = 2.646 \text{ mA}$$

$$V_{GS} = 2.23 \text{ V}$$

$$V_{DS} = 12.62 \text{ V}$$

(b)

$$R_E = 5.047619 \text{ k}\Omega$$

$$R_C = 4.5 \text{ k}\Omega$$

3. (a) The AC model is:

Use circuit analysis to obtain the voltage gain.

(b) Obvious from the above and $R_{\text{var}} = x R_{\text{pot}}$.

- (c) $V_{GSQ} = 2.4286 \text{ V}, I_{DQ} = 12.8571 \text{ mA}.$
- (d) $R_S = 330 \ \Omega$.
- (e) $R_D = 1 \text{ k}\Omega$.
- (f) $V_{DSQ} = 7.89286 \text{ V}, V_{GQ} = 6.67857 \text{ V}.$
- (g) $R_1 = 330 \text{ k}\Omega, R_2 = 120 \text{ k}\Omega.$
- (h) Obvious from the above and $R_{\text{var}} = x R_{\text{pot}}$.
- (i) $R_{\rm pot} = 100 \ \Omega$.
- (j) $Z_{in} = (100 x + 15.865) \Omega$.
- (k) $Z_{out} = 1 \text{ k}\Omega, \forall x.$

4. (a) $\overline{A} \wedge B \vee \overline{C} = \overline{(A \vee \overline{B}) \wedge C}$ which leads to the circuit (requires 8 MOSFETs):

Alternatively, one can design the circuit for $\overline{\overline{A} \wedge B \vee \overline{C}}$ and finish with an inverter as in the following (requires 12 MOSFETs):

- (b) i. $v_{out} = -6.2 + 22.4 v_{in} 11.2 v_{in}^2$
 - ii. 1 V $\leq v_{in} \leq 1.625 \text{ V}$
 - iii. Graphically we find values close to the ones below.
 - iv. $V_{iH}=1.726874~{
 m V},~V_{oL}=0.38575827~{
 m V},~V_{iL}=1.0446429~{
 m V},~V_{oH}=4.9776786~{
 m V}.$ It follows that

$$NM_H = 3.2508046 \text{ V}$$

$$NM_L = 0.65888463~{\rm V}$$

$$NM = \frac{NM_H + NM_L}{2} = 1.954844615 \text{ V}$$